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Reaction rates in classical chaotic ABC molecules 

B Bruhn 
Pachbereich Physik, Emst-Moritz-Amdt Univenittt, Domsmse loa, D-I7489 Greifswald, 
G e m y  

Received 28 July 1994. in final form ZCJanuary 1995 

Abstract. We investigate the reaction rates in a classical chaotic model of ABC uiatomics by 
means of analytical and numerical methods. There are different contributions to the reactive 
flux depending upon the parameters of the molecule and the total energy, respectively. For 
small coupling the cantoms flux dominates, whereas for a larger coupling parameter the lobe 
and turnstile dynamics near the unperturbed separatrix become imponant. A measure of the 
ratio of the reactive flux for the reaction and the backreaction. respectively, is discussed. The 
basic assumption for the derivation of this measure is the existence of a compound state of the 
molecule. Gwd agreement between numerical calculations and analytical predictions has been 
found. 

1. Introduction 

The basic assumption of the classical theory of reaction rates is that the seacting system 
can be described by the motion of a representative point in the phase space of the system 
[l]. The phase space is then divided by a trial surface into regions corresponding to the 
reactants and the products, and the rate can be calculated approximately by means of the 
flux through this surface. 

On the other hand, the present investigations of simple dynamical systems with few 
degrees of freedom have shown that the motion of representative points in the phase space 
can be a very complicated matter. In the case that the dynamics are partly or wholly 
chaotic, the boundary which divides the reactants from the products may not be smooth. 
Indeed, the nuturd boundaries between chaotic regions have a Cantor-type structure. These 
natural boundaries are'formed by the stable and unstable manifolds of hyperbolic sets of 
the associated Poinctd map. Moreover, one can use these invariant manifolds to precisely 
define partial barriers between different regions in phase space. The determination of the 
flux across the partial barriers is the main problem of the theory of transport and therefore 
it is also the main problem of the calculation of reaction rates in a classical system. The 
flux is determined by measuring the turnstile lobe area [2], however, this measurement will 
be a complicated problem in the case that there are different types of partial barriers in the 
phase space, e.g. canton and broken separatxices. 

In two recent papers [3,4] we have studied a near-integrable system, where canton, 
elliptic periodic orbits, transverse homoclinic and hansverse heteroclinic orbits occur. 
Similar systems have been studied in chemical physics in 15-81 (see also the references in 
[3,4] for similar systems in other fields of physics). The coexistence of qualitatively different 
regions in the phase space gives rise to different contributions to the effective reactive flux. 
For example, in the region of bounded solutions the cantori are the main barriers, whereas 
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near the borderline of bounded and unbounded solutions the broken separatrix plays an 
important role. Additional difficulties arise from the dependence of the flux upon the actual 
parameters and the total energy of the system. 

In this paper we investigate the classical stretching dynamics of ABC triatomics which 
are modelled by two coupled Morse oscillators (see also [4]). A special effort is made to 
study the reactive flux by means of numerical and analytical methods. In section 2 we 
introduce the equations of motion of the underlying model. Moreover, this section contains 
a numerical study of the reactive flux and a comparison with theoretical predictions. In 
section 3 we discuss a first step toward the determination of the equilibrium rate constants 
of the corresponding chemical reaction starting from the dynamics of the single molecule. 
An analytical formula for the ratio of the reactive flux of the reaction and the backreaction, 
respectively, is derived. The basic assumption for the derivation is the existence of a 
compound state of the molecule and our numerical experiments show that this assumption 
is justified, at least in a certain range of the parameter space. The existence of such 
an intermediate collision complex has also been observed in numerical experiments for 
unimolecular reactions some years ago [91, however, the use of the Melnikov method 
provides an analytical tool to find approximations for the reactive flux across the perturbed 
invariant manifolds. In section 4 we summerite our results and conclusions. In appendix A 
some elementary scaling transfonnations of the basic equations are discussed. The scaling 
map is helpful because it links the dynamical and geometrical quantities in both scattering 
channels. In appendix B selected formulae are listed which describe the critical parameters 
for channel transitions. 

2. Basic equations and numerical determination of reaction rates 

In [4] we have investigated the classical stretching dynamics of ABC triatomics in a 
simplified model. The system is defined by the dimensionless Hamiltonian function 

where XI and xz are the radial position coordinates which describe the deviation from the 
equilibrium distance between AB and BC, respectively, and y1 and yz are the canonically 
conjugate momenta. The parameters E ,  A and D are related to the molecule parameters by 

where 0 is the fixed bending angle; mA, mB and mc are the masses of the atoms concemed 
and D1 and LIZ are the dissociation energies of the AB and BC binding, respectively. A1 
and Az describe the range of the potential which is modelled by two Morse-type functions. 
The corresponding equations of motion then read 

(2.3) 

We will restrict our considerations to the case of small values of E because in that case 
the methods of pemrbation theory become applicable. This case is realized for masses 
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mB >> mA,mc. For E = 0 the equations of motion split into two independent Morse 
oscillators, where the energy functions 

H~ = i y ?  + D(e-hL - 1)' = E, H Z  = iy; + (e-"* ~- 1)' = E~ (2.4) 

of the single oscillators are constants of motion. Of course, then the phase space of the 
system has the strnchue of a direct product of the twdsingle phase spaces and the solutions 
can be found from the well known solution of the single Morse oscillator. In order to study 
the behaviour of the system for E # 0, we fix two surfaces of section by 

E1 = K X l ,  YI)  I x2 = 0, YZ > 0) (2.5) 

E2 = { (xz,  yz) I XI = 0, YI > 0) (2.6) 

and consider the Poincart? map P : E; + E; (i = 1, 2) induced by the solutions of the 
equations of motion (2.3). Of course, a variation of the total energy E yields different 
internal motion types of the molecule. For E c min(1, D )  hounded solutions can be 
found only, whereas for E > D + 1 all three atoms can be free. The intermediate interval 
max(1, D )  c E c D + 1 is the most interesting one because bounded and unbounded 
solutions are possible and the system can be considered as a two-channel scattering system. 
The asymptotic l i t  of the scattering is the limit x1 + 00 ,(channel 1) or xz + 00 

(channel 2). The motion within these channels can be described on the corresponding 
surfaces of section El or &. Of course, there is no smooth crossing between these 
two surfaces, however, other global sections (cf the discussion in [3]) also show some 
discontinuities. Moreover, the occurrence of discontinuities in the Poincart? map seems to 
be a general property in two degrees of freedom Hamiltonian systems with a non-trivial 
energy surface [lo]. Figure 1 shows the Poincare section E1 for selected initial values and 
parameters E =~1.5, A = 0.8, D = 1.3 and E = 0.01. We observe stable periodic orbits 
(m = 1, 2, 3) whose loci are marked by some nearby secondary KAM tori. The unstable 
periodic orbits and their chaotic neighbourhood ire not shown here. Between the m = 1 
and the m = 2 resonances we find a primary KAM torus. On the other hand, we observe the 
main stochastic layer for all initial conditions which are sufficiently close to the transverse 

0 2 4 7 7 - 6  

Figure 1. P o i n d  section plot XI for selected initial values and parameters: E = 15, A = 0.8, 
D = 1.3 and E = 0.01. 
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homoclinic orbit which is connected with the fixed point at infinity. Additional details of 
the phase space stmcture of the system can be found in [3,4]. 

The calculation of reaction ratcs which are based on the dynamics of the singlc molcculc 
is one of the basic problems in chemical physics. Next we discuss some numerical 
experiments in order to study the qualitative behaviour of the reaction rate for the single 
molecule. Of course, a chemical reaction takes place if there are channel transitions of a 
scattering trajectory and one observes an intramolecular energy flow from one of the atoms to 
the other. In order to find the reaction rate, one has to fix a set of initial data in the asymptotic 
range (channel 1 or 2) of the potential. The evolution of this set can be studied by means 
of a numerical integration of (2.3) and one expects that some parts of the initial set make 
a channel transition and some other parts lead to simple backscattering. Moreover, some 
exceptional initial points correspond to trajectories which remain within a bounded region 
of the potential for all times. Then the reaction rate can be found by the relative abundance 
N / N o  of the number of channel transitions N for a large number NO of initial points. 

In order to obtain comparable results for all values of the parameters A and D, the 
asymptotic region is fixed in channel 2 by xz 40 because the equation of subsystem 2 
does not contain any parameter. The asymptotic region in channel 1 is determined by the 
condition that the forces y1 and yz have the same numerical value, i.e. by using of (2.3) we 
obtain in the l i t  of large x1 and xz 

xi=---in( 1 exp(-xz) ) .  
A A D  (2.7) 

Therefore the asymptotic region in channel 1 depends on the asymptotic value xz as well 
as on the actual parameters A and D. We fix the momentum of the second oscillator at 
yz = 0 for initial values in the channel 1. The energy conservation then yields the following 
relationship between xz and y1: 

xz = -In (1 i , /E  - D - 4~;). 
Hence, the momentum y1 is resbicted to the interval 

YI E [-4@=z. m-51 

y(" = y1 E [-Jm, 0). 

and the set of incoming asymptotes clin be labelled by 

We chooe a uniform distributed number N ,  of points (a typical value of N, is 1000 or 
2000) in the entire interval (2.9). In order to exclude some effects which arise from the 
special value of the asymptotic initial points and xz, an averaging is performed over a 
set of Nx = 20 different sections in the asymptotic interval xz E 140,451. Therefore the 
total number of initial points amounts to NO = N,N,. 

Figure 2 shows a typical numerical result of the dependence of the reaction rate upon the 
coupling parameter E .  The corresponding initial data are chosen in channel 1 and, of course, 
the rate depends upon the other parameters as shown by the two curves for A = 0.5 and 
A =~2.0. In the case of very small values of E the rate is zero and this indicates the existence 
of a primary KAM torus which forms a complete barrier between the two channels. Orbits 
cannot intersect this invariant surface and are confined in the first channel. The scattering 
is chaotic, however, it is a simple backscattering. Above a critical threshold value the rate 
increases with increasing coupling parameter. The dependence seems to be approximately 
described by a linear function over a large range. This observation suggests that the main 
contribution to the reactive flux comes from the turnstile lobe dynamics near the unperturbed 
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Figure 2. Dependence of the reaction rate NINo upon 
E;  parameters: E = 1.5, D = 1.0, A = 0.5 and 
A = 2.0. Initial data in channel 1. 

Figure 3. Dependence of the reaction rate N/No upon 
E ;  parameters: A = D = I, E = 1.5 md E = 1.85. 

separatrix because the lobe area is proportional to the coupling E (cf equation (A.10)). The 
dependence cannot be described by a linear function near the threshold value. Figure 3 
shows this region more precisely in the case of a symmetrical molecule. For E = 1.5 we 
find a local maximnm near E % 0.023. The major baniers to transport in this region appear 
to be the cantori at least for energies E which are not close to E = D + 1. Therefore 
the cantorus flux A W, restricts the reactive flux between the channels. A W, is defined by 
the maximum of the differences in action for minimax orbits in the gaps of the cantorus 
(cf [16]). Using renormalization theory, a scaling law can be obtained for the cantoms 
flux AW, which is expected to be valid for any system provided E is close enough to the 
threshold value [14,15]. The essential dependence is given by 

(2.10) 

where E > sf and E: is the threshold value which can be calculated by means of (B.3) 
or (B.4). We have performed a numerical analysis in order to test the universality of the 
scaling law (2.10) near the breakup also in the case of reactive scattering. Using the same 
parameters as in figure 3 and E = 1.5, a reference point EO is chosen in the interval 
0.0125 c EO < 0.024. Then the scaling law yields 

or by substitution the rate N/No for the flux AW” 
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Flgure 4. Test of the scaling law near lhe breakup of 
invariant tod; parameten: E = 1.5, D = 1.0, A = 1.0, 
CO = 0.018, E; = 0.0138. NO = 4OooO. The dotted line 
indicares the region of the linear dependence. 

I 

Table 1. Comparison of the theoretical and numerical threshold values of lhe coupling E for 
selected parameten. 

E A D m(6.d) m ( ~ : , e Z  SN 

1.30 1.0 1.0 0.019 0.016 
150 1.0 1.0 0.014 0.009 
1.85 1.0 1.0 0.006 ' 0.001 
1.70 1.0 15 0,019 0.015 
2.00 2.0 1.5 0.010 0.013 
2.20 4.0 1.5 0.004 0.009 
1.70 1.5 1.0 0.008 0.005 
1.70 1.5 15 0.019 0.026 
2.30 1.5 2.0 0.015 0.017 

0.021 
0.014 
0.003 
0.020 
0.010 
0.009 
0.006 
0.022 
0.019 - 

i.e. we expect a propofion (N(.2))'If .., ln(E/Et). Figure 4 shows the results of the 
numerical experiment for EO = 0.018 and EE % 0.0138. We note that E: is the value 
of the threshold obtained from the resonance overlap criterion (B.1) which is in better 
agreement with the numerical value than the threshold calculated by means of (B.3) 
(see also table 1). Of course, the scaling law (2.10) is not valid for larger coupling 
parameters E, for example figure 4 shows that for E z 0.019 (In(E/&f) z 0.32) 
deviations from the linear dependence occur. On the other hand, the statistical error 
becomes large for (E/&;) + 1 because the number of channel transitions tends to zero 
in this limit, however, there is a finite range where the correct behaviour (2.10) can be 
observed. 

The onset of the hear dependence of the rate for larger values of the coupling 
E (cf figure 3 )  seems to be connected with the existence of a transverse heteroclinic 
orbit. Such orhits appear by intersection of the manifolds of the periodic orbit at 
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infinity with the manifolds of the symmetric stretching orbit (cf [9). For E = 1.5 
the theoretical value E: = 0.0312 is in quantitative agreement with the beginning of 
the linear dependence (cf equations (B.5) and (B.6)). For larger values of the energy 
(see the curve for E = 1.85 in figure 3) the linear dependence upon E dominates 
over the whole interval. Indeed, the dynamics occur closer to the separatrices and 
the lobes becomes more important. Moreover, the critical values of the onset of the 
channel transitions and the value of the onset of heteroclinic intersections are of the 
same order. For E = 1.85 we find by using the overlap condition (cf equation p.1)) 
E' - 0.00596 and the corresponding value for hetemclinic intersections amounts to 
E! The threshold calculated from (B.3) has the somewhat smaller value 
E: = 0.001 13. 

In order to check the quality of the theoretical threshold values of the channel 
transition, we have performed some numerical scattering experiments for selected values 
of A, D and E.  The results are shown in table 1, where EH is the Corresponding 
numerical value which is determined from the first non-vanishing value of the rate. The 
comparison shows that the theoretical thresholds E' and sC are of the same order and the 
differences to the numerical value are rather small, i.e. the theoretical thresholds give a 
good approximation. 

In the last analysis of this section we study the question of whether our numerical 
quantity N/No is the correct measure to describe the reaction rate or the reactive flux 
between the two channels. The flux represents a physical action and therefore we expect 
a scaling law as (A.11) if the scaling !"formations of appendix A are performed. The 
scaling law can he tested by two independent numerical calculations which start in channel 1 
and channel 2, respectively. By using parameters in agreement with A / f i  = 1 and scaling 
the energy according to (A.4), we expect to obtain the same rate for the reaction and the 
backreaction, respectively. Figure 5 shows the result of such a numerical experiment and 
we find a perfect agreement with our expectations. 

0.00957. 

0.10 o"*l 

3 Figure 5. Dependence of the reaction rate NINo upon 
E for the reaction and the b a c k " .  respeaively. EPSLON 
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3. A measure of the reactive flux rates 

Let SI be the reactive flux for the reaction 

A + BC 4 A B  + c (3.1) 

A B  + c 4 ~  + B C .  (3.2) 

i.e. for the flux from channel 1 into the channel 2 and let Sz be the corresponding flux for 
the backreaction 

Then the (macroscopic) equilibrium rate constants kl and kz will depend upon the reactive 
flux rates SI and Sz of the single molecule. The knowledge of the flux SI and S, as 
a function of the total energy E of the molecule opens the possibility of calculating the 
rate constants by averaging with an equilibrium distribution function. In order to find an 
approximation of the reactive flux, we consider the following basic assumption: the reactive 
process A + BC e A B  + C runs through a compound state (ABC)’. This assumption is 
suggested by observations made in numerical experiments. Many scattering trajectories 
which start in the asymptotic region spend a long time inside the essential interaction 
region and run alongside bounded chaotic orbits. The mean time of stay in a finite inner 
region ( X I ,  xz < 00) of the potential is much larger than the time of stay of a free particle 
in the same region. Moreover, the coupled Morse system is a chaotic one and therefore 
the trajectory has forgotten its initial conditions after a small number of iterations of the 
Poincar6 map in the compound state (cf 1171 and the references therein). The compound 
state decays if the trajectories run intopne of the channeIs and leave the inner region of the 
potential. Then the essential point is that the flux rates into the two channels are determined 
by the decay rates of the compound state. Hence, we have 

(3.3) 

The decay into the two channels can be considered as a kind of a dissociation process from 
a bounded region of the phase space (see also [15,18]). 

Now let B be the set of initial conditions of the compound state in the phase space with 
a fixed total energy E E (max(1, D), D + 1). We denote the boundary of B by aB and 
define the following subsets: 

(ABC)’ -+ AB + C (ABC)’ -+ A + B C .  

B ~ = B ~ x ~  a B 1 = a B n z : ,  
Bz = B E2 aB2 = a B n  E2 

where X I  and Cz are given by (2.5) and (2.6). On E; the outer boundary of B; can be well 
defined by using the segments of the stable and unstable manifolds of the fixed points at 
infinity. We choose a primary homoclinic intersection point q and segments of the manifolds 
which connect the point q with the corresponding fixed point at infinity. It is appropriate 
to choose this so-called pseudoseparatrix so that it is as close as possible to the separatrix 
of the associated integrable problem. The conservation of the total energy E of the system 
then provides the inner boundary of E;. In order to make this consmction more clear, we 
describe the region of the compound state in terms of the unperturbed system E = 0. In 
this case the phase flow has the product structure y , (E~ , )y z (Ez ) ,  where y; (i = 1.2) is one 
of the periodic solutions of the subsystem i and E; are the corresponding energies defined 
by (2.4). The unperturbed separatrices r; are the limiting solutions 

rl = z i D y 1 m  r2 = i i  Y ~ ( E ~ )  
&-PI 
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Ngum 6. Qualitative swcture of the compound region B1 on the section B1 

of the periodic orbits. Taking into account the conservation of the total energy E = E1 + Ez, 
we have the product flow 

Yl(E1)YdE - El) (3.4) 
and this will be considered as a one-parameter family (parameter El) of solutions for a fixed 
E. In the limit El + D we obtain the solution - D). Of course, rl is the outer 
boundary of the compound state on B1 and n(E - D) is the inner boundary of BZ on Xz. 
Continuous decrease of El so that (E - El) + 1 yields the solution yl(E - l)rz, where 
now yl(E - 1) is the inner boundary of E1 and rz is the outer boundary of Bz. Therefore 
the compound region BI on X1 has a ring shape bounded by aB1 = rl U yl(E - 1) and on 
XZ we find the boundary aBz = rz U yz(E - D). Figure 6 shows the qualitative structure 
of the compound region on tbe section XI. This is a rough estimation because one observes 
islands of order around the elliptic periodic orbits on Xi in the perturbed problem E # 0 
(cf also figure 1). These regions of order must be subtracted from the compound state 
because any trajectory which starts within these islands is confined for all times and cannot 
contribute to the decay rate. Moreover, the coupling parameter E must be sufficiently large 
so that all primary KAM ton are destroyed and the trajectory can pass from one resonance 
to another within the whole compound state. Some of the threshold values are given in the 
appendix B. 

Using the interpretation of the lobe area p(Li )  as the instantaneous flux across the 
unperturbed separatrix, we describe the relative part of the compound state which escapes 
into the first channel in one step of the map 81 -+ B1 by p(L l ) /p (B~) .  The corresponding 
quantity on XZ is p ( L z ) / ~ ( B z ) .  More precisely, one has to consider the quotient 
p(Li n Bi) /p (B i )  because the lobes may partially intersect the compound region Bi (see 
OUT discussion at the end of this section). However, in a first step we consider the simplified 
version. In order to compare both quantities we have to take into account that the step sue 
is different on BI and XZ, respectively. This can be seen, for example, in the unperturbed 
solutions y l ( E  - 1). yz(E - D) or by consideration of the two periodic orbits at infinity. 
Therefore we define the time normalized flux by 

where T(y i )  is the period of the corresponding periodic orbits at infinity. The lobe area on 
the cross sections can be calculated by means of the homoclinic Melnikov functions up to 
the litst order in E to give (A.10) and (A.12). Therefore we obtain a first-order result for 
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the flux Si by using the unperturbed solutions in the calculation of p(Ei) and T(yi). This 
analysis is easy to perform and one obtains 

where S2 is defined hy (A.7). Using these results and (A.lO), (A.12) one finds (3.5) to have 
the form 

A E J Z A Q m  
s2 = -p(Lz) = 

4x2 K(fisinh(AS2) + i2cosh(AQ)) . (3.7) 

Moreover, we define the function R(E, A, D )  by 

sz cL(Lz) A m ( S i n h ( - & )  +Qcosh(&)) 
R(E,A,D) = - = - - (3.8) - (fisinh(AS2) + Qcosh(AQ)) 

where the dependence upon E results from (A.7). The function R describes the ratio of the 
decay rates of the compound state. The formation of the compound state can be understood 
in a similar manner and one finds the same result by using the fact that the inward flux 
and the outward flux across the unperturbed separatrix have the same value. Hence, the 
function R must be a measure of the reactive flux rates. 

Let us discuss some properties of this function. An application of the scale 
transformation of appendix A provides the inverse function R-' as it must be if the channels 
are exchanged. Furthermore, R(E, A,  D )  is independent on E at least in the first order of 
the perturbation theory, however, E must be larger than the threshold values for channel 
transitions in order to secure that the reactive flux is non-zero. In the special case of 
symmetrical molecules A = D = 1 one obtains R = 1 over the whole range of the total 
energy. This is correct from the physical point of view because the symmetrical model 
is invariant with respect to a permutation of the two channels. The dependence upon the 
parameter A provides 

lim R(E, A, D )  = 00 lim R(E, A,  D )  = 0 (3.9) 

i.e. one of the flows SI, Sz tends to zero. however, the rate of convergence is very different 
for (3.6) or (3.7). Of course, this is an effect of the integrability of the equations of motion 
(2.3) in the l i t  A + 0 or A + W. On the other hand, the limit E + D + 1 (or Q + 0) 
yields 

l i  R(E, A, D )  = 1 (3.10) 

which seems to be evident because for E z D + 1 the atoms can move over the whole 
(XI, xz) coordinate space. But it must be underlined that this limit is hard to discuss because 

A-tO A+CC 

E+D+1 
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the area of the compound state @ ( E i )  tends to zero. In the case of the unperturbed problem 
this is compensated by the increasing periods T(y i )  (cf the denominator in (3.5)), but in the 
perturbed problem one cannot exclude some variations. Moreover, there is a second point 
of interest which is connected with the decrease of the area of the compound state p(Bi ) .  
The lobe area is fixed by 

E 4 l I 4  
lim p(L1)= lim p ( L z ) =  

E-D+I E+D+I ( A  + l / a )  
(3.11) 

and the inner boundaries of B; tend to the separatrices r;. Therefore the region of 
intersection of the lobes L; and of the compound state B; shrinks to zero, i.e. one expects 
that only parts of the lobes fall into the compound region E$. As a matter of principle, our 
assumption p(Li n B;) % p(Lj )  becomes wrong for values of E coming close to Df 1. In 
order to give a simple estimation of the range of the validity of (3.8). we use the maximum 
of the homoclinic Melnikov function which characterizes the width of the main stochastic 
layer near the unperturbed separanix [ill. For E --f D + 1 we have (cf [4] or appendix B 
of this paper) 

(3.12) 

where f i i  is the maximum of Mj(t~,). Our approximations (3.6) and (3.7) break if on the 
section & 

(3.13) ~ f i i  ~ E i l r ,  -EI~~,(E-I) = D + 1  - E  
and by using (3.12) one finds the critical energy E = E* to have the value 

9 n E D A  

&(l+ A a ) 2  ' 
E* = D + 1 - (3.14) 

Here we have taken into account the interpretation of the maximum Mt as a measure of 
the width of the main stochastic layer in terms of the unperturbed energy levels. The 
calculation on yields the same result. It must be noted that we have overestimated f i j  
by (3.12) because the maximum of the Melnikov function depends upon the total energy 
E ,  however, our result (3.14) gives the correct order. For values of the energy E > E' 
there is the possibility of defining some effective areas of the lobes which model the area 
of p(Li  n Bi), however, this will not be considered in this paper. 

We illustrate some properties of our theoretical result (3.8) by numerical experiments. 
Two sets of initial data as described in section 2 are chosen in channel 1 and channel 2, 
respectively. The quotient of the rates, i.e. the number of channel transitions into the second 
channel divided by the number of transitions into the first channel gives the numerical 
quantity corresponding to the function R(E, A ,  D ) .  Figure 7 shows the dependence on E 

for fixed E = 2, D = 1.5, A = 2 and A = 4. The dotted lines indicate the theoretical results 
calculated by means of (3.8). We find statistical fluctuations around the theoretical result 
and the mean value.of the numerical data seems to be independent of E as predicted by (3.8). 
Of course, the statistical error becomes large for small E because, near the threshold value, 
only very few transitions occur. We hope that the results can be improved by increasing the 
total number of initial points, however. the problem are permanent near the threshold value 
of the coupling. The numerical experiment shows that there is a small decay of R for larger 
values of E,  e.g. for A = 4 and E = 0.3 we find R z 0.25. We next consider the dependence 
of R upon the total energy which is represented in figure 8. Note that for any value of the 
energy a new interval of initial conditions (cf equation (2.9)) has been used. In the range 
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Figurr'l. Dependenceof the function R ( E .  A, D) upon 
E ;  parameters: E = 2.0, D = 1.5, A = 2.0 and 
A = 4.0. The do& lines correspond to (3.8). 

Flgure 8. Dependence of R ( E .  A, D) upon the total 
energy E ;  parameters: E = 0.08. D = 1.5 and A = 2 

1.5 c E -= 2 the function decreases with increasing energy as predicted by our theoretical 
result. The difference between the numerical result and the theoretical predictions become 
large for E + 2.5. Using equation (3.14) we find the associated critical value of the energy 
E' = 2.17 which gives the boundary of the applicability of (3.8). One may think that the 
range of the applicability can be extended in the limit E -+ 0 because then E* tends to 
D + 1 = 2.5 (cf equations (3.14)). However, in this limit the KAM tori becomes important 
and the reactive flux is zero. It is remarkable that our simple model works at all because the 
dynamics of the scattering trajectories show a very complicated behaviour in the mentioned 
interval of the energy. The results of this section can be summarized by the statement that 
the agreement between the theoretical and numerical results is not perfect, but we can find 
qualitatively and, at least in some parameter regions, quantitatively correct description of 
some properties of the reaction rates. 

4. Conclusions 

In this paper we have shown that the methods of the classical theory of transport, i.e. the 
dynamics of the lobes and turnstiles can be applied to the coupled Morse system. Our 
model is in some sense a generic one because the qualitative properties remain the same 
for other physical potentials. For example, the Lenard-Jones potential provides a similar 
two-channel model with unstable periodic orbits at infinity. Moreover, one finds transverse 
intersecting manifolds, chaotic scattering, regions of order near the elliptic periodic orbits 
and channel transitions which model a chemical reaction. The main difference to the Morse 
problem is that the analytical calculations of the perturbation theory are more complicated 
and cannot be performed in all details. However, a numerical analysis of reaction rates is 
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always possible. The only property of the coupled Morse system which is in some sense 
non-generic is the absence of the Arnold diffusion which does not occur in problems having 
less than three degrees of freedom. 

In order to make the comparison with the (real) experiment, one has to calculate the 
equilibrium rate constants starting from (3.6)-(3.8). As a matter of principle, this can 
be performed by ensemble averaging, i.e. one assumes that the reacting molecules are 
independent of each other. For a real physical system this condition is equivalent to the 
statement that the mean free path of the molecule must be large compared with the interaction 
range and, of course, this is fulfilled for most of gases away from the critical point. 

Moreover, molecules are objects which must be described by means of quantum 
mechanics and therefore our classical model contains some of the limiting properties of 
real molecules only. The finite value of Planck's constant restricts the localization in the 
classical phase space and significant channel transitions can be observed only if the reactive 
flux exceed the value of this constant. The situation is similar to Jhat for muitiphoton 
ionization [I51 and the consideration of quantum effects yields an elevation of the classical 
thresholds. Moreover, it has been shown [I91 that some classical properties of transport 
have a counterpart in quantum spectral fluctuations, i.e. some information of the classical 
flux can be translated in terms of random matrix theory. On the other hand, there are many 
open questions concerning the quantum problem and as much knowledge as possible of the 
underlying classical system may be helpful to clarify some of them. 
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Appendix A. 

In reference [4] we have used the methods of perturbation theory to prove the existence of 
chaotic Scattering and of elliptic and hyperbolic periodic orbits, to calculate the width of 
the main stochastic layer and of resonances and to predict the range of initial conditions 
where singularities in the scattering function are found. All these quantities are calculated 
on C1 and can be found by an analogous consideration also on Cz. However, there is a 
very simple map which connects the relevant quantities on 81 with that on Bz. In order to 
find this map we consider the equations of motion (2.3), perform the scale transformation: 

and define a new set of parameters by 

(A.2) I D' = 1/D A' = 1/A E = E .  

Hence, the new equations of motion are given by 

X' - Yf = 7,(e-4 - 
(A.3) 

I - Yf -cry;  
2 - YL - E'YI i' - j,; = ~ A ~ D ~ ( ~ - A ' x ;  - 1)e-A'4 

where the overdot indicates the differentiation with respect to the time 2'. A comparison 
with (2.3) shows that the new equations of motion have a similar form but now with the new 
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parameters (A.2). Additionally the index of channels (or subsystems) has been changed, 
i.e. the surface of section X I  in favour of (A.3) (defined as (2.5) with a dash) corresponds 
to the surface & for (2.3). Therefore any scattering process which starts in channel 1 
with parameters A ,  D ,  E is related to a scattering process which starts in channel 2 with 
parameter A‘, D‘, E’. Of course, the total energy E must also be transformed. Using (2.1), 
(A.l) and (A.2) one finds the scaling law 

, E  E =-. 
D 

The physical meaning of the scaling map becomes clear by consideration of (2.2) because 
the transformation (A.2) can be realized by the exchange 

mA -mc A I  - AZ DI i-+ DZ 

i.e. we have permuted the atoms A and C, respectively. It must he underlined that E = E‘ 
is invariant which is important because our results in [3 ,4]  are based on a power series 
expansion with respect to this parameter. Therefore the order of the perturbation theory is 
not changed after an application of the scaling Wansformation. 

Now let f l ( E ,  A ,  D ,  E ,  . . .) be a physical quantity which characterizes the dynamics on 
C1. Then there is the connection 

(A.5) 
where A(A’, D’) is a scaling factor’which results from the dimensional analysis of the 
function fi, and f i ( E ,  A ,  D ,  E ,  . . .) (i.e. without the dash!) is the corresponding function 
on Cz. In order to give an example, we study the homoclinic Melnikov function on E1 . 
This function is given by I41 

f I ( ~ ,  A ,  D , E , .  . .) = A(A’, D ’ ) ~ ~ ( E ’ ,  A‘, D’ ,E,  .. .) 

where 

01 = sinh (L) + C2 cosh (”) 
A V 5  A J B  

p = cosh (&) + Q sinh (5) 
and 

Q = Ji +. D - E .  

The Melnikov function is a first-order measure of the distance separating the stable and 
unstable manifolds of the fixed point at infinity on Cl. Simple zeros of this function prove 
the existence of an invariant hyperbolic set A which contains the chaotic orbits [ll]. From 
the physical point of view the product ~ M l ( t 0 )  represents an energy increment (cf [12]) and 
we expect a scaling law of the form 

1 
Ml(to; E ,  A ,  D) = y M z ( t A ;  E’, A‘, D‘) D (A.8) 

i.e. the scaling factor A(A’, 0 ’ )  is that of the energy (cf equation (A.4)). Inserting (A.l), 
(A.2) and (A.4) into the function MI (to; E ,  A ,  D )  provides 
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Moreover, the comparison with (A.8) yields 

where 

6 = ficosh(AS2) + a sinh(AQ) . 
The function Mz(fo)  measures the distance between the stable and unstable manifold of the 
fixed point at infinity on Ez. The same result can be obtained by a direct calculation of the 
homoclinic Melnikov function by means the unperturbed separatrix~ solution 

CE = &sinh(AQ) + Qcosh(AQ) 

and one of the periodic solutions of the subsystem 1. However, the use of the scaling 
properties is very simple compared to the direct evaluation of the Melnikov integral. 

The turnstile lobe dynamics is the central point of interest for the understanding of the 
relationship between the phase space geometry and the dynamics in the homoclinic tangle 
[Z, 131. The partial baniers (e.g. the broken separatrix) and the turnstiles are fixed in the 
Poincark map, and the lobe area p ( L )  on the cross section which represents the instantaneous 
flux across these partial bamiers can be. approximated by means of the homoclinic Melnikov 
function according to 

h= E l ;  IM(ro)ldfo + O(gZ) 

where to1 and tm describe two neighbouring zeros of M(t0) .  Using (A.6) the calculation is 
easy to perform and the result on El is given by 

4 E J 5 Q m  
A L 1 )  = 

A (sinh (&) + Qcosh ($)) (A.10) 

where Q is defined by (A.7). In order to find the corresponding formula on XZ an application 
of the scaling transformation is possible. The lobe area represents a physical action and 
therefore we expect a scaling law of the form 

(A.ll) 
A' 

~ ( L I ;  E ,  A, D )  = -p(Lz;  E', A', D'). 0 
The simple algebraic calculation provides 

4 & & z Q m  
(fisinh(AQ2) + Qcosh(As2)) . = (A.12) 

This result can be calculated, of course, starting from (A.9). Applying the scale 
transformation in the same manner one can obtain, for example, the threshold values for 
channel transitions on & or some other interesting quantities (cf appendix B). 

Appendix B. 

In this appendix we list some formulae which can be used to calculate the width of the 
main stochastic layer, the threshold values for channel transitions and the critical coupling 
parameters for heteroclinic intersections. The theoretical background and the calculations on 

can be found in [3,4] (see also the references therein). In order to find the corresponding 
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quantities on Cz we have applied the scaling transformations of appendix A, however, the 
direct evaluation is always possible. 

The threshold of breakup of the invariant tori can be calculated by means of the 
resonance overlap criterion [ZO].  Let t be the function 

where (m, n) is a pair of integers which characterize the resonance of order m/n. Of course, 
the threshold value depends upon the order of the resonance, however, we bave shown that 
the ( 1 , l )  resonance dominates over a large region of the phase space [4]. Therefore we 
consider the critical E of this special resonance only. The value is determined by 

3A312 
(B.1) A= 4 f i  ((1 + A?=+ (1 + 4 A Z ) m  

on C1 and, moreover, on C2 one finds 

3A112 
( B . 3  & = 4 f i ( ( 1 + A Z ) m + ( 4 + A  2) m' * 

The onset of channel transitions is determined by the largest value of E; and 8;. respectively. 
On the other hand, the threshold value can be calculated by means of the methods of 
renormaliiation theory [14, U]. In this case the ( 1 , l )  resonance dominates over the whole 
interval of A, D and E and the corresponding critical E are approximately given by 

where R' ~ t :  0.25008 is the critical residue. The threshold of channel transitions is 
determined by ma(.$, E;) and this is E; for A t 1 and E: for A < 1. 

The simplest possibility of estimating the critical coupling parameters for the existence 
of transverse heteroclinic orbits in the Morse model has been studied in the case of a 
symmetrical molecule [3]. This treatment can be generalized to the case A # 1, D # 1 by 
substitution of the ( 1 , l )  resonance for the symmetric stretching orbit. We can estimate the 
critical E: and by the condition that the energy difference A& between the unperturbed 
separatrix solution and the m = 1, n = 1 resonance must be filled by the resonance half- 
width and the half-width of the main stochastic layer. The calculation yields the following 
estimates: 

E t  = ( l + A z ) f i z  /- 1 - f 2 ( 1 , 1 )  ( -1 + /8*T(l,I)n') +A2)(1 -c2(1,  1)) (B.6) 
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where the maximum A& = maxroER Mi&) can be calculated by means of the homoclinic 
Melnikov functions (A.6) and (A.9) to be 

- 
Mi = (J3.7) 

16m~'2~,/pJp~ + S(1- '22) - p 2  - 2(1- Q2) 

Az/Z (38 - ,/B2 + 8(1- Q2))* 

16irAZQ z p -J7 p2+ 8(0 - Qz) - pz - - 2 ( 0  - Q2) - 
Mz = (B.8) 

Here a, p ,  h, and 9 are defined as in appendix A. &Mi gives the width of the main 
stochastic layer on the surface Ci in terms of the unperturbed energy levels and the limiting 
case (3.12) can be found by a discussion of (B.7) and (B.8). 
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